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A major contemporary challenge in ecology is predicting when 
and where introduced species will be successful (Kolar and Lodge, 
2001). Unfortunately, specific adaptive traits characterizing a suc-
cessful invader often do not hold for all invasive species (Sakai et al., 
2001). Trait-based ecology shows promise for identifying mecha-
nisms that drive the success of invasives and predicting future pat-
terns (Leishman et al., 2007; Tecco et al., 2010; van Kleunen et al., 
2010; Murphy et al., 2016) because a functional approach can reveal 
the mechanisms underlying different phenological, morphological, 
and physiological characteristics that influence species’ responses 
to the environment. A number of functional traits have been related 
to invasive performance and colonization success. These include 

rapid germination and flowering phenologies (Kimball et al., 2011; 
Colautti and Barrett, 2013), increased allocation to photosynthetic 
and reproductive structures (Leishman et al., 2007; Moroney et al., 
2013; Erskine-Ogden et al., 2016), water-use efficiency matched to 
site-specific environments (Tecco et  al., 2010; van Kleunen et  al., 
2010), and combinations of each (Kimball et al., 2014). That said, 
many iconic invasives occupy a wide breadth of environments 
(Colautti et al., 2009), so focusing on a subset of the invaded sys-
tem may not adequately represent important traits and processes. 
We expect that three categories of functional traits that influence 
establishment, survival, growth, and reproduction will reveal mech-
anisms driving invasive success: phenological, morphological, and 
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Trait variation was related most strongly to variation in winter precipitation patterns across 
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CONCLUSIONS: Our results identify key functional traits of this invasive species that showed 
significant variation among introduced populations across a broad geographic and climatic 
range. Further, trait variation among populations was strongly related to key climatic 
variables, which suggests that population divergence in these traits may explain the 
successful colonization of Sahara mustard across its invaded US range.
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physiological traits. Plasticity and rapid evolution of these traits in 
novel environments likely facilitates expansion in invaded ranges 
(Burton et al., 2010; Davidson et al., 2011).

Species invasions typically result from interacting features across 
ecological, evolutionary, and organismal processes. As such, the 
rapid alignment of phenological and morphological traits associ-
ated with favorable conditions for establishment (e.g., germination 
timing, seed size) as well as the timing of reproduction are likely 
necessary for most invasives to succeed (Muth and Pigliucci, 2006; 
Wolkovich and Cleland, 2011; Novy et al., 2013; Nguyen et al., 2016). 
Some invasive species have rapidly responded to invaded environ-
ments over short periods (e.g., <100 yr; Novy et al., 2012; Nguyen 
et al., 2016). This has been shown to be true in invasive species in 
desert systems worldwide (Chambers et al., 2007; Drenovsky et al., 
2012; Marushia et  al., 2012; Merrill et  al., 2012; Erskine-Ogden 
et  al., 2016). Thus, invaders in these systems may succeed only if 
traits affecting fitness are able to match local environments (e.g., 
rainfall variability and seasonal temperature covariance; Loik et al., 
2004). Such patterns would be consistent with strategies associated 
with desert adaptation in ephemeral plants (e.g., Smith et al., 1997; 
Huxman et al., 2013) and would suggest that invasive species exploit 
trait relationships similar to those of native species that succeed in 
these environments, but also that they likely employ enhanced per-
formance in several attributes that further success (e.g., Kimball 
et al., 2014).

The range of Sahara mustard (Brassica tournefortii) is rapidly 
expanding and negatively affecting natural ecosystems across the 
southwestern United States (Barrows et  al., 2009; VanTassel et  al., 
2014). This invader has become increasingly common in arid and 
semiarid regions throughout the Southwest since its putative in-
troduction in the 1920s (Sanders and Minnich, 2000). The species 
has invaded ecosystems ranging from coastal Mediterranean in 
California to hot desert localities from Arizona to Texas. Further, 
Sahara mustard has several features that hint at its capacity to rap-
idly evolve. The species is a generalist and, as such, germinates un-
der a wide range of temperatures, light conditions, and soil depths 
(Thanos et al., 1991; Jurado and Westoby, 1992; Chahuan et al., 2006; 
Bangle et al., 2008). It is also highly fecund: the species is capable 
of self-fertilization (i.e., facultative autogamy) and produces seeds 
rapidly (~50 d from germination; Marushia et  al., 2012) and in 
high quantities (Trader et  al., 2006) that can remain viable ≥1 yr 
after production. The species also exhibits some level of dormancy 
(Adondakis and Venable, 2004; Chahuan et al., 2006), which may al-
low for buffered population dynamics during unfavorable or unpre-
dictable conditions (Venable, 2007; Gremer et al., 2016). Individual 
plants can produce >16,000 seeds annually that disperse via small 
mammals, flowing water, wind, and human transport (Trader et al., 
2006; Sánchez-Flores, 2007; Bangle et al., 2008; Berry et al., 2014).

Further, Sahara mustard’s ability to self-fertilize and its large dis-
tribution likely promote local adaptation and rapid range expansion 
(Sakai et al., 2001) as well as establishment in new isolated localities 
by single individuals. In other words, Sahara mustard has many of 
the common traits associated with rapid population dynamics and 
invasive success (Grime, 2006; Ordonez, 2010), but the functional 
biology underlying its success, and how that varies across the in-
vaded range, is poorly understood. Previous modeling work sug-
gests that Sahara mustard might exist as a plastic, general-purpose 
genotype (sensu Baker, 1965) such that the invaded range environ-
ment matches that of the native range (Li et  al., 2015). However, 
Sahara mustard occupies a large native range (Marushia et  al., 

2012; Li et al., 2015) and likely exists as several genetically distinct 
populations that have been separated by thousands of kilometers 
and generations (Parker et al., 2003; Lawson Handley et al., 2011). 
Further, it is most probable that Sahara mustard in the United States 
is representative of only a small regional population from its native 
range (i.e., Lombaert et al., 2010; Arnesen et al., 2017). Although a 
few ecological studies have examined the species’ performance and 
impacts in a few invaded areas (Barrows et al., 2009; Marushia et al., 
2010, 2012; VanTassel et al., 2014; Li et al., 2015), no research has 
been conducted to determine how functional trait variation may 
explain the success of this rapidly spreading invasive. Thus, Sahara 
mustard is an ideal system to explore the functional biology under-
lying species invasions.

Our study aimed to identify key functional traits that explain 
the success of Sahara mustard across a broad range of environments 
in the southwestern United States. We tested for population diver-
gence in functional traits using multigenerational common garden 
experiments, whereby we grew plants in common garden environ-
ments and matched plant traits to features associated with their 
source environment locality. In doing so, we distinguished between 
environmental, maternal, and offspring-level variation effects on 
observed phenotypes. We predicted that phenological traits, par-
ticularly germination, would vary across populations with different 
environmental cues (Wolkovich and Cleland, 2014). Specifically, we 
expected higher germination rates in populations from more xeric 
sites because success of individuals at these sites would likely re-
quire that they take advantage of relatively rare, ephemeral rains. 
We expected that precipitation would best predict variation across 
all three functional categories of traits (phenological, morpholog-
ical, and physiological) because Sahara mustard occupies water-
limited environments that vary in precipitation regime in its native 
range, and variable precipitation is critical in the southwestern 
United States. We also expected to see variation among popula-
tions in allocation of biomass to leaves, with increased allocation in 
populations that experienced increasing aridity across the species 
range, suggesting increased competition for resources with native 
species. Last, we predicted that water-use efficiency (WUE) and leaf 
nitrogen investment would vary among populations, with more arid 
sites having higher WUE and leaf N, similar to other desert invad-
ers (Huxman et al., 2013; Kimball et al., 2014). Further, we expected 
that winter precipitation would be a strong driver of reproductive 
allocation. Overall, we predicted that divergence in functional traits 
would explain Sahara mustard’s current invaded range.

MATERIALS AND METHODS

Species natural history

Sahara mustard (Brassicaceae: Brassica tournefortii Gouan) is an 
annual native to the Mediterranean basin and much of the Middle 
East through to western India (Prain, 1898; Thanos et  al., 1991; 
Aldhebiani and Howladar, 2013). It is considered a weedy species in 
agricultural fields in parts of its native range (Ahmed et al., 2015; El-
Saied et al., 2015) but also has traditional dietary uses and economic 
value in regions where it is cultivated (Singh et al., 2015; Guarrera 
and Savo, 2016). Sahara mustard is an invasive throughout much 
of Australia (Chahuan et al., 2006), South Africa (McGeoch et al., 
2009), Chile (Teillier et al., 2014), and western North America (Li 
et  al., 2015). In North America, the first documented occurrence 



� 2018, Volume 105  •  Winkler et al.—Functional trait variation in Sahara mustard  •  3

of Sahara mustard comes from a herbarium sample collected 
in the Coachella Valley, California, in 1927. It is thought to have 
been introduced as a contaminant of date palm translocation into 
the hemisphere (Sanders and Minnich, 2000) and remained rela-
tively unnoticed except in the Coachella and Imperial valleys of 
California’s deserts, where it was observed to be locally established 
(Musil, 1948; Robbins et  al., 1951). Herbarium records track its 
spread to coastal California in the late 1950s and to Tucson, Arizona, 
and Sonora, Mexico, in the early 1970s. The species apparently saw 
a population boom beginning in the 1980s when it spread rapidly 
throughout the Southwest (Sanders and Minnich, 2000).

Field sampling and common garden design

In spring 2015, we collected seeds from 20 individual plants from 
10 locations spanning a ~10° latitudinal and ~15° longitudinal 
gradient across Sahara mustard’s invaded U.S. range (Fig.  1 and 
Table 1). Sites ranged from coastal Mediterranean to hot desert eco-
systems. Desert ephemerals such as Sahara mustard require expo-
sure to summer temperatures to break dormancy and cue seeds for 
germination (Clauss and Venable, 2000; Huang et al., 2016). Thus, 
we stored field seeds in paper envelopes in the greenhouses at the 
University of California, Irvine (daily mean temperature range: 26–
32°C) during summer 2015, after which we stored seeds at room 
temperature (~20°C) in the laboratory before growth experiments. 
Sahara mustard seeds can remain viable 4–5 yr after collection when 
stored in a dark cool place as we have done (Chauhan et al., 2006).

We grew field-collected seeds for two generations to account for 
the influence of maternal environment. From each maternal line, 
we randomly selected three seeds and sowed them into the top 1 cm 
of soil (sensu Chauhan et al., 2006) in 11.4 L containers. We used a 
custom mix of 85% unwashed sand, 10% perlite, and 5% cactus mix 
(Scotts Miracle-Gro). We placed containers randomly on green-
house benches but grouped by sampling site to prevent fertilization 
across sites. Sampling sites were spaced out ~3 m. We randomly 

rotated sampling-site containers weekly to control for any small-
scale environmental variation in the greenhouse. Greenhouse 
temperatures were kept above freezing and below 24°C, averaging 
15–20°C for the duration of the experiment, via an automated cli-
mate control system (GEM Link; QCOM, Irvine, California, USA). 
Soils were watered regularly to keep seeds moist and encourage 
germination. We surveyed daily for germination and removed any 
additional germinants after the first individual emerged, to prevent 
competition for resources within each pot. It is possible that this in-
troduced bias toward earlier-germinating plants in our study. These 
first germinants, however, likely represent a major portion of the 
trait variation in established seedlings in the field (e.g., Thompson 
et al., 2001; James et al., 2006). Plants were fertilized weekly after in-
dividuals produced two true leaves (Peter’s 20-20-20 solution, Scotts 
Miracle-Gro). Outcrossing rates are incredibly low in Sahara mus-
tard (<10%; Winkler, 2017) and plants were allowed to self-pollinate 
or cross-pollinate within sites. We harvested seeds from this first 
common garden generation once seedpods had visibly ripened but 
before pods burst. We weighed seed and sowed them as above. Only 
individuals of this second generation were used in analyses, to avoid 

FIGURE 1.  Sampling sites across the invaded range of Sahara mustard (Brassica tournefortii). See Table 1 for site characteristics.
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TABLE  1.  Site codes, names, geographic locations, and elevation of Sahara 
mustard sampling sites.

Code Location Latitude, longitude Elevation (m)

CA1 Nipomo 35.048, −120.512 128.22
CA4 In-Ko-Pah Park Road 32.647, −116.106 905.68
CA3 Coachella Valley Preserve 33.772, −116.304 24.64
CA2 Mojave National Preserve 34.803, −115.612 1193.11
NV Las Vegas 36.090, −115.233 726.88
UT Red Cliffs National 

Conservation Area
37.225, −113.406 985.23

AZ2 Saguaro National Park 32.177, −110.739 962.64
AZ1 Dateland 32.801, −113.541 130.86
NM Mesquite 32.184, −106.678 1195.52
TX Fort Hancock 31.299, −105.832 1114.53
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the influence of maternal effects (Roach and Wulff, 1987). In total, 
we sowed 2000 field-collected seeds from 115 maternal lines and 
10 sampling sites. Not all seeds were viable, resulting in 1600 seeds 
germinating from 87 maternal lines across the 10 sites.

Measurements

We measured phenological, morphological, and physiological 
functional traits of the second ex situ generation. We chose traits 
that have been shown to be important for invasives or that respond 
strongly to environmental conditions typical of the desert biomes 
invaded in North America (Leishman et al., 2007; Tecco et al., 2010; 
Huxman et  al., 2013; Kimball et  al., 2014; Murphy et  al., 2016). 
Phenological traits included time to germination, leaf expansion, 
and flowering. We measured germination timing of each individual 
as the days from seed sowing to germination. We tracked leaf phe-
nology daily during the first month and every other day thereafter. 
We recorded leaf expansion as the date of emergence for each of the 
first five true leaves each individual produced. We recorded time to 
flowering as the number of days from germination to anthesis.

We measured several morphological traits, including 
aboveground biomass components (including stem, leaf, and 
reproductive-structure dry weights), relative growth rate, allocation 
to leaf area, and allocation to reproduction. We randomly harvested 
three plants from each locality biweekly starting 1 mo after initial 
germination and ending when seeds ripened. Harvesting lasted for 
3 mo, or 6 harvesting sessions. We cut aboveground components 
at the soil surface and sorted plant parts into leaves, stems, and re-
productive structures. Leaves were counted, weighed, and digitally 
scanned using a Canon MF8200C printer (Canon, Tokyo, Japan) 
and a LI-3100C Area Meter (LI-COR, Lincoln, Nebraska, USA). We 
calculated leaf area for the 25 largest leaves (or all leaves if <25 were 
available) using ImageJ (Schneider et  al., 2012). Any remaining 
leaves were grouped for area measurements. We calculated mean 
leaf area as the sum of the area of all leaves divided by the total 
number of leaves. We then dried all plant components for 48 h at 
60°C to obtain dry weight. We estimated relative growth rates for 
each population as the slope of linear regressions between log10 
transformed aboveground biomass and time (sensu Angert et  al., 
2007). Last, we calculated the percentage of biomass allocated to 
reproductive structures (% repro) as the dry weight of reproductive 
structures divided by the total aboveground biomass of each plant.

We also measured physiological traits, including water-use effi-
ciency (WUE), leaf carbon (Cmass) and nitrogen (Nmass) content, and 
relative water content of leaves. We collected leaf tissues prior to 
flowering and concurrent with the third harvest for isotopic anal-
ysis. Leaf 13C, Cmass, and Nmass were analyzed at the University of 
California, Davis Stable Isotope Facility via an elemental analyzer 
interfaced to a mass spectrometer (PDZ Europa, ANCA-GSL, and 
PDZ Europa 20-20; Secron, Cheshire, UK). We converted carbon 
isotope ratios to discrimination values (Δ, per mil δ—a time-
integrated measure of water-use efficiency; Dawson et al., 2002) by 
the equation Δ = δa − δp / (1 + δp) × 0.0001, where δa is the car-
bon isotope ratio of atmospheric CO2 (assumed to be −8 δ) and δp 
is the measured carbon isotope ratio of the leaf tissue (Farquhar 
et al., 1989). Lower values of Δ indicate higher intrinsic WUE values 
(Dawson et al., 2002).

We measured relative water content (RWC) of leaves at peak 
productivity as a proxy for leaf turgor (Smart and Bingham, 1974). 
We sampled three individuals from each site and used leaf punches 

from the healthiest, fully emerged leaf from each plant. We obtained 
fresh weights of leaf punches and then floated leaves in distilled wa-
ter in a Petri dish for 6 h in a dark room to allow for rehydration. 
We obtained the assumed turgid weights and dried leaves for 24 
h at 60°C to obtain dry weights. We used these data to calculate 
RWC as wf − wd / wt − wd, where wf, wd, and wt are fresh weight, dry 
weight, and turgid weight, respectively (Weatherley, 1950; González 
and González-Vilar, 2001).

Environmental data

We used BioClim climate variables from each sampling site to test 
for trait divergence and alignment with local environmental condi-
tions (Hijmans et al., 2005). These climate variables represent annual 
and seasonal trends, as well as extremes in temperature and precip-
itation, which are often useful in describing species distributions. 
We evaluated 19 BioClim climate variables (BIO1–19; Hijmans 
et al., 2005) at a 30 arc-second resolution (~1 km2) for inclusion in 
our models. We tested all variables for pairwise correlation across 
the study area using the Raster package in R to prevent overfitting 
(Hijmans and van Etten, 2012). We retained 7 of the 19 BioClim lay-
ers that had correlation coefficients under |0.70| (Appendix S1; see 
Supplemental Data with this article), four of which were related to 
temperature and three to precipitation. When variables were highly 
correlated, we retained those variables related most directly to our 
hypotheses. For example, we retained those related to winter precip-
itation, because our study system exists as a winter ephemeral plant, 
as well as variables that best captured the aridity gradient across 
the species’ range. Temperature variables included isothermality 
(tempiso; the mean monthly range divided by the annual range in 
temperatures; BIO3), temperature seasonality (tempseasonality; stand-
ard deviation × 100; BIO4), and mean temperatures of the wettest 
(tempwetqtr) and coldest (tempcoldqtr) quarters (BIO8–9). Precipitation 
variables included precipitation during the wettest (precipwetmonth) 
and driest (precipdrymonth) months (BIO13–14), and precipitation of 
the coldest quarters (precipcoldqtr; BIO19).

Statistical analyses

We first calculated summary statistics by population for key func-
tional traits associated with phenology, physiology, and morphol-
ogy (Appendix S2). We then used Pearson correlation coefficients 
to identify which traits best represented these functional trait cate-
gories and removed autocorrelated traits (r > |0.70|). Nine key func-
tional traits were retained for final analyses. (Appendix S3). These 
functional traits were combined with the reduced set of geographic 
and bioclimatic variables in subsequent analyses to understand var-
iation across localities.

We used nested analysis of variance (ANOVA) to examine po-
tential effects of site and maternal lineages as sources of variation 
in functional traits. We included age of the plant as a covariate for 
ANOVAs of non-phenology traits to account for potential time-
dependent ontogenetic effects associated with different harvests. 
We log10 transformed measurements when needed to meet statis-
tical assumptions. We then used hierarchical partitioning if the 
ANOVA showed significant population differences. Hierarchical 
partitioning allowed us to examine the relative contribution of geo-
graphic and bioclimatic temperature and precipitation variables in 
explaining variation in functional traits. Hierarchical partitioning 
enables better estimation of the relative importance of each variable 
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while also accounting for potential colinearity of explanatory varia-
bles (Chevan and Sutherland, 1991; Murray and Conner, 2009). For 
each hierarchical partitioning analysis, we first accounted for cor-
related error structures that arise from repeated measures (within 
populations) and used linear mixed-effects models with each func-
tional trait as the response variable and maternal lineage nested 
within population as random effects and related the residuals to ge-
ographic and bioclimatic variables using hierarchical partitioning. 
We then performed randomization tests on each functional trait 
(1000 iterations each using an r2 goodness-of-fit measure) to assess 
the significance of each geographic and bioclimatic variable. We 
computed Z-scores to determine the significance of each explan-
atory variable. Last, we used linear regression to test relationships 
between population means for each functional trait and the geo-
graphic and bioclimatic variables identified as significant by rand-
omization tests (we report nonsignificant relationships in Appendix 
S4). All statistical analyses were carried out in R version 3.3.2 (R 
Core Team, 2014), and models were evaluated using the “effects” 
package (Fox, 2003).

RESULTS

We found strong differences among populations for all nine func-
tional traits (Table 2), which suggests that trait divergence among 
populations may play a role in influencing plant performance across 

the invaded range of Sahara mustard. This was evidenced most 
strongly in phenological and morphological traits related to germi-
nation (days to germination: F8, 501 = 7.88, P < 0.001; seed weight: 
F9, 119 = 3.70, P < 0.001) and early growth (days to first leaf: F8 = 4.97, 
P < 0.001; days to first flower: F8 = 5.41, P < 0.001). These traits var-
ied by 105%, 57%, 145%, and 99%, respectively, across the 10 local-
ities evaluated from the invaded range in North America. However, 
populations also exhibited differences in additional morphological 
traits, including mean leaf area (F7, 113 = 3.49, P = 0.002) and propor-
tion of biomass allocation to reproduction (% repro; F8, 89 = 5.19, P < 
0.001), which varied by 1143% and 1300%, respectively. Populations 
also varied by 16%, 9%, and 121% for physiological traits related to 
water stress and nutrient allocation—RWC (F8, 19 = 2.55, P = 0.045), 
WUE (F7, 9 = 51.68, P < 0.001), and Nmass (F7, 9 = 19.87, P < 0.001). 
Variation within populations was observed for each category of trait 
variation (Table 2). Significant effects of maternal lineage were de-
tected for days to germination (F33, 501 = 5.92, P < 0.001), first leaf 
(F33, 489 = 4.97, P < 0.001), first flower (F31, 332 = 2.12, P < 0.001), mean 
leaf area (F27, 113 = 1.58, P = 0.05), WUE (F9, 9 = 84.16, P < 0.001), and 
Nmass (F9, 9 = 11.63, P < 0.001).

Although several bioclimatic variables were important predic-
tors of trait variation, no single variable was most important across 
all traits. Precipwetmonth explained four of the nine tested traits—pri-
marily phenological features (i.e., germination time advanced, and 
number of days to first leaf increased with increasing precipita-
tion) and morphological features (i.e., individual seed weight and 

TABLE 2.  Nested ANOVA results testing for effects of population, maternal lineage, and individual plant age on functional traits in Sahara mustard. Traits include 
phenological measurements of the number of days to germinate (days to germ), leaf phenology (first leaf), days to the first flower (first flower), individual seed weight 
(seed wt; mg), mean leaf area (mm2), the percent of carbon allocated to reproductive structures (% repro), relative water content (RWC), water-use efficiency (WUE; ∆), 
and leaf nitrogen content (Nmass; μg). Significant P values are in bold.

Trait

Population Maternal line Plant age Error

df SS F P df SS F P df SS F P df SS

Days to germ 8.00 12.61 7.88 <0.001 33.00 34.26 5.19 <0.001 – – – – 501.00 100.19
First leaf 8.00 10.15 4.97 <0.001 33.00 37.52 4.46 <0.001 – – – – 489.00 124.79
First flower 8.00 907.00 5.41 <0.001 31.00 1378.70 2.12 <0.001 – – – – 332.00 6958.30
Seed wt 9.00 0.72 3.70 <0.001 9.00 0.25 1.29 0.25 1.00 0.60 27.74 <0.001 119.00 2.59
Mean leaf area 7.00 7.60 3.48 <0.001 27.00 13.34 1.59 0.05 1.00 20.47 65.67 <0.001 113.00 35.31
% repro 8.00 0.13 5.20 <0.001 26.00 0.12 1.57 0.06 1.00 0.24 80.00 <0.001 89.00 0.27
RWC 8.00 3.30 2.55 0.05 15.00 2.87 1.18 0.36 1.00 0.10 0.60 0.45 19.00 3.07
WUE 7.00 0.01 51.68 <0.001 9.00 0.03 84.16 <0.001 1.00 0.00 59.11 <0.001 9.00 0.00
N

mass
7.00 1.14 19.87 <0.001 9.00 0.85 11.63 <0.001 1.00 0.33 40.05 <0.001 9.00 0.07

TABLE 3.  Hierarchical partitioning results showing percentage of variance explained by individual geographic and bioclimatic variables. Asterisks indicate which 
variables explained a significant amount of variance based on randomization tests for hierarchical partitioning with an upper 95% confidence limit (Z ≥ 1.65; statistical 
results reported in Appendix S5). Traits include phenological measurements of the number of days to germinate (days to germ), leaf phenology (first leaf), days to the 
first flower (first flower), individual seed weight (seed wt; mg), mean leaf area (mm2), the percent of carbon allocated to reproductive structures (% repro), relative water 
content (RWC), water-use efficiency (WUE; ∆), and leaf nitrogen content (Nmass; μg).

Trait Latitude Long Elevation Tempseasonality Precipwetmonth Precipdrymonth Precipcoldqtr

Days to germ 11.93 10.10 12.27 11.73 22.33* 15.24* 16.39*
First leaf 9.07 10.65 38.70* 11.34 16.55* 6.17 7.52
First flower 12.57 11.71* 7.77 36.93* 10.90 9.30 10.81
Seed wt 5.81 10.87 20.82* 4.82 26.07* 21.12* 10.48
Mean leaf area 23.82* 9.89 21.67* 13.63 17.06 8.44 5.49
% repro 17.55 9.29 7.17 7.07 27.02* 15.38 16.53
RWC 4.13 12.26 41.85 6.99 12.80 5.78 16.19
WUE 12.72 17.41 26.09 12.03 17.98 7.46 6.30
N

mass
17.63 24.80 2.96 27.81* 11.29 10.03 5.48
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allocation to reproduction decreased with increasing precipitation; 
Table 3 and Appendix S5). Elevation was also clearly important, ex-
plaining ~40% of the variation in timing of first leaf and RWC (a 
phenological and a physiological trait, respectively). In both cases, 
elevation likely correlates with additional environmental variables 
that drive leaf phenology and potential cellular water deficit as 
indicated by RWC (a physiological trait that increased with ele-
vation, tracking typical increases in precipitation with elevation). 
Tempseasonality also explained a substantial proportion of variation, 
but only for timing of the first flower (phenology; Table  3). For 
physiological traits, the only bioclimatic variable that explained 
variation was temperature seasonality, which had a positive rela-
tionship with leaf nitrogen content. All other geographic and biocli-
matic variables explained <30% of the variation in functional traits.

Precipwetmonth explained a percentage of variance for the highest 
number of functional traits, including days to germination, timing 
of the first leaf, seed weight, and percentage of biomass allocated to 
reproductive structures (% repro). All of these are functional traits 
related to issues associated with aligning biological activity to con-
ditions during germination and early stages of growth. Longitude 
explained a portion of variation in timing to first flower, reflecting 
typical phenology patterns from the coastal to interior sites associ-
ated with growing-season constraints arising from aridity. Similarly, 
variance in mean leaf area was explained by latitude. Finally, a per-
centage of variation in individual seed weights was explained by 
precipdrymonth, likely indicating a shift to investing in heavier seeds 
that could survive hot summers in relatively dry environments.

The number of days to germination decreased with increasing 
winter precipitation (precipwetmonth; r

2 = 0.49, P = 0.03; Fig. 2). Time 
to first leaf increased with longitude (r2 = 0.50, P = 0.05), again likely 
following typical phenology patterns moving inland. Time to first 
leaf also increased with increasing winter precipitation (precipwetmonth;  
r2 = 0.56, P = 0.03). Similar to hierarchical partitioning results, indi-
vidual seed weights decreased with increasing winter precipitation 
and precipitation during the driest months (precipwetmonth; r

2  =  0.62, 
P = 0.01; precipdrymonth; r

2 = 0.52, P = 0.03). This trend was also ob-
served with percentage of biomass allocated to reproductive struc-
tures (% repro), which decreased with increasing winter precipitation 
(precipwetmonth; r2 = 0.80, P < 0.01; Fig.  2). Finally, the lowest RWC 
(i.e., highest cellular water deficit, although marginally significant; 
r2 = 0.43, P = 0.06) was observed at the lowest elevations in desert 
sites. Concurrently, the highest water-use efficiency was observed at 
these low-elevation sites (r2 = 0.68, P = 0.01) and followed precipdrymonth 
(marginally significant r2 = 0.47, P = 0.06; Fig. 2), indicative of adapt-
ing to water stress.

DISCUSSION

Invasive populations may encounter unique selective pressures and 
limitations across their ranges, including differences in abiotic con-
ditions such as drought, temperature, and seasonality. Identifying 
which plant traits have contributed to and may predispose invasives 
to spread into novel environments allows us to better understand 
the mechanisms driving invasion, predict future patterns, and pro-
vide targets for management (Funk et al., 2008). The results of the 
present study demonstrate significant variation in key functional 
traits in Sahara mustard in a common garden environment, which 
suggests that this species has responded to variable selection pres-
sures with different phenological, physiological, and morphological 

strategies across a broad range of environmental conditions in the 
southwestern United States. Further, we quantified the relative con-
tributions of geographic and bioclimatic factors in explaining var-
iation in observed phenotypes, showing that functional strategies 
of Sahara mustard corresponded with local variation in seasonally 
available precipitation. The shifts in phenological, morphological, 
and physiological traits observed among populations of Sahara 
mustard are likely to have facilitated its successful invasion across 
the region. This variation reflects altered water-use efficiency to 
tolerate drought stress, adjustment in the timing of key biological 
events within the context of aridity, and investment in reproduc-
tion to ensure future success. These patterns are consistent with the 
generalized strategies of desert adaptation used by ephemeral plants 
(e.g., Smith et  al., 1997; Huxman et  al., 2013). This suggests that 
Sahara mustard likely exploits trait relationships similar to those of 
native species that are successful in these environments, but also 
that it likely employs enhanced performance in several attributes 
that further contribute to success (e.g., Kimball et al., 2014).

While the ecological and evolutionary patterns in arid systems 
like those occupied by Sahara mustard are similar overall, regional 
environmental contexts vary considerably, particularly in rainfall 
variability and seasonal temperature covariance (Loik et al., 2004). 
Functional trait approaches that relate species performance to en-
vironmental variation have proven useful for determining effects of 
contemporary climate change (e.g., Kimball et al., 2010) and can be 
powerful in elucidating the mechanisms that promote the success of 
invasive species (Colautti and Barrett, 2013; Funk, 2013; Wolkovich 
et  al., 2013; Winkler et  al., 2016; Gilbert et  al., 2017). However, a 
grand challenge in ecology and evolutionary biology is understand-
ing how invasive species respond to and leverage environmental 
variation during establishment. This challenge is made more urgent 
by the need to forecast ecological and evolutionary dynamics in the 
face of climate change and future invasions.

Sahara mustard has colonized multiple ecoregions of North 
America in <100 yr and appears well poised to continue to dom-
inate arid environments and expand its range. Part of this success 
has been attributed to the ability of some invasives to self-fertilize 
(Schemske, 1984; Barrett et al., 2008; Marushia et al., 2012; Pannell, 
2015). Our results identify shifting phenologies, investment in 
leaves and reproductive structures, and water-use efficiencies to 
match environmental drivers as critical for establishment and sur-
vival in the invaded range. Sahara mustard responded to decreas-
ing winter precipitation (precipwetmonth) by increasing allocation to 
reproductive structures, thereby ensuring that seeds could tolerate 
drought stress in the driest sites. Together, these reproductive and 
functional traits likely allow Sahara mustard to overcome recruit-
ment barriers that challenge species in novel environments (Weber 
and Schmid, 1998).

We found that Sahara mustard exhibits substantial population 
variation in germination and growth related to local, seasonal 
precipitation. In doing so, this species may be able to synchronize 
its growth to local conditions, which would not only increase its 
reproductive success, but also increase its competitiveness with 
native species (Powell et al., 2011; Wolkovich and Cleland, 2011). 
Thus, the level of trait divergence observed in our common gardens 
is consistent with local adaptation, given the unlikely alternatives 
that many distinct Sahara mustard genotypes invaded (Lawson 
Handley et al., 2011; Colautti and Barrett, 2013; Oduor et al., 2016; 
but see Genton et  al., 2005; Oduor et  al., 2015) or that genetic 
drift serendipitously resulted in environmental correlations. That 
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said, plasticity may also explain part of the trait variation we ob-
served. Nonetheless, our results suggest a genetic component to 
the variation in functional traits in Sahara mustard, which likely 
contributes to the continued success of the populations we sam-
pled. Given these populations’ variability across their range, the 
ability to rapidly adapt to new environments may enable the spe-
cies to spread into additional semiarid or pulse-driven systems 
(Drenovsky et al., 2012).

Phenotypic plasticity is often important for successful establish-
ment of invasives early in the invasion process (Sexton et al., 2002; 
Richards et  al., 2006; Funk, 2008; Davidson et  al., 2011; Castillo 
et  al., 2014). Plasticity can promote local adaptation by enabling 
populations to persist in novel environments, in which they experi-
ence new selection pressures and potentially lose plasticity through 
time (Parker et al., 2003; Franks et al., 2007; Ghalambor et al., 2007; 
Crispo, 2008). While we cannot fully distinguish between fixed 

FIGURE 2.  Linear regressions of functional traits and geographic and bioclimatic variables identified as significant in hierarchical partitioning analy-
ses and with significant linear regressions (r2 and P values are reported in each panel). Circle colors match those of each population in Figure 1. Graphs 
illustrate relationships between (A) days to germination and precipitation during the wettest month, (B) days to first leaf and longitude, (C) days to first 
leaf and precipitation during the wettest month, (D) individual seed weight and precipitation during the wettest month, (E) individual seed weight 
and precipitation during the driest month, (F) percentage of biomass allocated to reproductive structures and precipitation during the wettest month, 
(G) relative water content (RWC) and elevation, (H) water-use efficiency (WUE) and elevation, and (I) WUE and precipitation during the driest month.



8  •  American Journal of Botany

and plastic variation in traits from our data, we did address pos-
sible maternal and ontogenetic effects on trait variation and have 
evidence for population differentiation in traits in a common gar-
den environment. It is likely that Sahara mustard also exhibits plas-
ticity, given its large range that contains many similar environments 
(Tecco et al., 2010; Drenovsky et al., 2012). Future work to quantify 
the relative contributions of fixed and plastic variation in traits in 
response to precipitation, temperature, and geographic position 
would be productive for understanding the mechanisms driving in-
traspecific variation in traits. This would also elucidate the microev-
olutionary dynamics associated with the successful invasion of this 
species and would be valuable to pursue using a reciprocal garden 
design in both native and invaded ranges (Moloney et  al., 2009). 
An open question is how these processes interact to influence plant 
behavior, encompassing the complex system of multiple traits, and 
how plasticity, population divergence, and ontogenetic dynamics 
are combined across the range.

Overall, our results demonstrate that this species exhibits func-
tional trait variations across populations that correspond to envi-
ronmental variability across thousands of kilometers in its invaded 
range. We have thus shown that linking life-history strategies, func-
tional traits, and responses to environmental variation can assist 
in producing a mechanistically based predictive framework for 
ecologists to understand the behavior of invasive species in space 
and time (Huxman et  al., 2013). Although many invasions arise 
as a result of accidental introductions (Lehan et  al., 2013), range 
expansions of already established invasives may occur under fu-
ture climate scenarios (Novy et al., 2012; Nguyen et al., 2016), and 
Sahara mustard seems poised for such an expansion. Sahara mus-
tard’s range of functional strategies across multiple environments, 
coupled with self-compatibility and high production of propagules, 
make it a strong contender for continued invasion under future sce-
narios (DeFalco et al., 2003; Nguyen et al., 2016).
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