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SHORT COMMUNICATION

Guano deposition predicts top predator (Amblypygi: Phrynidae) abundance in subtropical caves
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Abstract. Absence of light is a fundamental characteristic of subterranean ecosystems; thus, productivity must be
supported indirectly by influx of detritus from effulgent environments. I examined how this influx impacts the carrying
capacity of a cave predator: the whip spider Phrynus longipes (Pocock, 1894). Although solitary, territorial and
cannibalistic, this species occurs at extremely high densities in caves. To test the hypothesis that this is an effect of nutrient
flow and not cave structure, I examined whether guano deposition at cave entrances predicted estimated population sizes
of whip spiders. I found a strong correlation, suggesting that whip spider carrying capacities are at least partly determined
by nutrient influx to the cave ecosystem. Larger guano deposits support a larger community of arthropod detritivores,
which act as prey to this top predator in a bottom-up effect. This highlights the importance of considering surface
environmental and population health along with commercial guano harvesting when studying and conserving caves and
the species therein.
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Nearly all terrestrial ecosystems rely on sunlight as the primary
source of energy, and caves are no exception. Caves, however, have
the additional challenge of accessing the sun’s energy indirectly—
caves are typified by darkness. This problem is overcome by transport
of detritus into caves from surface environments, where sunlight is
abundant. Cross-habitat detritus influx can occur via periodic
flooding, streams carrying material, or organisms accidentally falling
into cave entrances. The most productive caves, however, receive the
sun’s energy stored as guano (Polis et al. 1997; Vanni et al. 2004;
Culver & Pipan 2009). Bats and birds use cave ceilings as roosting
sites, where they defecate, resulting in piles of nutrient-rich and
biologically available resources on the cave floor. Many organisms
rely directly on guano piles for food and microhabitats (Ferreira &
Martins 1998; Ferreira et al. 2000; Ferreira & Horta 2001; Moulds
2004; Gnaspini 2012). In fact, several species are specialized in
consuming guano, including salamanders and ants (Fenolio et al.
2005; Moulds 2006; Gnaspini 2012).

It is generally understood in food web theory that energy influx
increases primary productivity, which can have bottom-up effects on
the community (Paine 1966; Matson & Hunter 1992; Rosemond et al.
2001). How detrital-based webs function has gained recent research
interest (Rosemond et al. 2001; Moore et al. 2004; Mammola 2018;
Venarsky et al. 2018). Caves are eminently suited to address this topic
because they are relatively simple systems that oftentimes rely
exclusively on detritus, not primary productivity, for energy. Further,
caves in the karst belt of Puerto Rico vary greatly in bat abundance,
ranging from very few bats, as in Cueva Larvas, to huge, multispecies
bat populations exceeding 300,000 individuals across three families, as
in Cueva de los Culebrones (Rodrı́guez-Durán 1998). This variation
has warranted a special delineation in tropical and subtropical caves:
hot vs. cold caves. Hot caves are those with such an abundance of
bats that their body heat and guano decomposition heat the cave,
sometimes to temperatures in excess of 408C (Ladle et al. 2012). These
systems generally have higher biodiversity and more endemics than
cold caves (Ladle et al. 2012).

The amblypygid Phrynus longipes (Pocock, 1894) occurs in both
hot and cold caves in Puerto Rico (Esposito et al. 2015). Amblypygi is
an order of large, nocturnal, predatory arachnids, including several
species of which reside facultatively in caves. They generally feed on

arthropods of sufficient size but will also consume vertebrates (Fig. 1;
Chapin & Hebets 2016). Phrynus longipes is a highly territorial and
cannibalistic species found in both cave and surface environments in
Puerto Rico (Chapin 2015). Some Puerto Rican caves host huge
populations of P. longipes at high densities. For example, previous
research at Cueva de los Culebrones estimated a density of two
individuals m�2 (Chapin 2015). Given that the adult leg span of P.
longipes can reach 70 cm, this is an extremely high density, where
practically all territories abut each other. As such, cave P. longipes
must negotiate frequent interactions with territorial (Chapin & Hill-
Lindsay 2016) and cannibalistic (Chapin & Reed-Guy 2017)
conspecifics in darkness. On the surface, however, P. longipes are
sparsely distributed across limiting, patchy microhabitats, rarely
interact, and fall prey to a diversity of predators absent from the cave
environment.

It remains unclear why P. longipes can achieve such high densities
in caves. I hypothesized that this huge density of predators is
explained, and thus limited by, energy influx into the cave ecosystem
in the form of bat and bird guano. As such, I predicted that guano
deposition rates would correlate positively with population estimates.
Alternatively, whip spider population densities could be limited by
space. If this is the case, then I expect cave depth to predict
population estimates.

Assistants and I conducted mark-recapture surveys to estimate
cave population densities across four caves in the karst belt of Puerto
Rico (generally located at 18.4148N, 66.7268W) in August 2014:
Cueva de los Culebrones, Cueva Maria Soto, Cueva Matos, and
Cueva Larvas. I explored the extents of all caves to determine the
range of P. longipes for each site. Populations were delineated by cave
extents, except in Cueva de los Culebrones, where a dead zone (i.e., a
zone of low oxygen) limited the species range to the first ca. 120 m
(Chapin 2015).

I estimated populations across three nights from 18:00 to as late as
04:00. On the first night, assistants and I captured P. longipes and
marked them with Testors brand enamel paint on the prosoma
dorsum. For the remaining two nights, I recaptured amblypygids,
marked unmarked individuals, and counted marked individuals. The
short latency between marking and recapture surveys allowed for
Lincoln-Petersen estimates (Seber 2002). I used the Chapman
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estimator, which is an estimator similar to Lincoln-Petersen, but with

less bias at small sample sizes (Chapman 1951). This estimate assumes

closed populations with no birth, death, immigration, or mark loss.

These assumptions are realistic for this system, since dispersal is low

and surveys were conducted on consecutive nights.

I measured guano deposition by placing six metal trays (20 cm

diam.) evenly spaced across each cave entrance. I weighed each tray

before leaving them at cave entrances for 24 h to collect guano. I then

placed the metal trays in a drying oven at 608C for 7 d before weighing

them again. I averaged the change in tray weight for each cave and

tested if guano deposition predicted P. longipes population sizes via

linear regression. Further, I measured the depth of each cave to the

nearest meter to test if cave size predicted P. longipes populations.

This was done in a separate model. I performed analyses in the

programing language R 3.5.1 (R Core Team 2014).

Assistants and I collected 1,271 P. longipes across the four caves.

The cave-wide population estimates varied from nearly 50 to over 500

individuals (Chapman-Petersen estimate 6 95% CI). Cueva Matos

and Cueva de los Culebrones had the highest population sizes and the

greatest guano deposition (Table 1; Fig. 2). These two caves had large

populations of bats, especially when compared to Cueva Maria Soto

and Larvas, which had very few bats; Cueva Maria Soto was mostly

used by cave-dwelling sparrows. Ceuvas Culebrones and Matos could

be considered hot caves for this reason (Ladle et al. 2012). Mean

guano deposition was highly predictive of cave population sizes (m¼
5.74 6 0.77, R2¼ 0.97, F1,2¼55.45, P¼0.018), such that larger guano

deposition supports larger populations of P. longipes. Cave size alone,

Figure 1.—The amblypygid Phrynus longipes eating a primary consumer (Blattodea; top panel) in Cueva de los Culebrones, Aricebo, Puerto
Rico, USA. Increased guano deposits support more primary consumers (bottom inset), which allows for enormous whip spider populations
(bottom panel).
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however, did not predict amblypygid population sizes (F1,2¼0.04, P¼
0.86).

Bat and bird guano deposits, but not cave size, correlated with P.
longipes populations across four caves, suggesting that prey abun-
dance limits whip spider population sizes. Thus, it seems that bottom-
up effects impact top predator carrying capacities in these systems.
Guano deposition has been shown to increase population sizes of
primary producers in a similar manner (Polis et al. 1997). For
example, seabird deposits improve soil nitrogen on desert islands
(Sánchez-Piñero & Polis 2000; Wait et al. 2005) and the bats of
Bracken cave, home to ca. 20 million Mexican free-tailed bats,
provide important nutrients to invertebrate communities (Iskali &
Zhang 2013). Food web theory predicts that cave guano increases
primary consumers and, indirectly, predators of those consumers,
thus having bottom-up effects on the cave trophic pyramid. Bottom-
up effects have been shown in similar systems. For example, adding
detritus increases top arthropod predator abundance in leaf-litter
forest communities (Chen & Wise 1999). Future research that
manipulates energy influx into caves could provide valuable insights
into these effects.

The close correlation between guano deposition and population
size suggested that P. longipes population sizes are limited by bat
population sizes. This link between two secondary consumers from
disparate food webs highlights the importance of understanding cave-
surface interactions in both research and conservation. Surely, the
persistence of P. longipes cave populations depends on the bats and
birds using caves, and human impacts to bats will likely impact entire
subterranean ecosystems. Population health of threatened cave
species may be improved by supporting bat and bird populations.
Further research is needed on the interdependence of surface and cave

ecosystems and the use of guano estimates as proxies for prey
abundance. In particular, guano estimates can enable research where
prey populations are exceedingly difficult to measure, like inverte-
brate communities in cave systems. Studies comparing a large number
of caves could reveal more complex patterns of cave energy-influx.

Some cave populations were exceptionally dense, and Cueva Matos
is the largest estimated Amblypygi population to date (Bloch & Weiss
2002; Carvalho et al. 2012; Chapin 2015). Cave amblypygids are
clearly impacted by increased interaction rates with conspecifics
relative to surface populations (Chapin & Hill-Lindsay 2016). This,
combined with low predator abundance in caves, makes cannibalism
a primary risk for cave amblypygids (Chapin & Reed-Guy 2017).
Increased cannibalism risk seems to have presented selection pressure
for agonism avoidance, less aggressive encounters, or other tolerant
behaviors (Chapin 2015). However, evolutionary research on the
system to understand how this variation is maintained remains
wanting.

The estimates of guano deposition occurred over only a short time
period and across a small number of caves. Further research could
examine how behavioral changes of guano depositors through time
impact cave ecosystems. Behaviorally-mediated seasonality could
occur in caves if behavior changes energy influx, e.g., with migrating
species. I also did not measure the intermediate consumer in the
system. Examining temporal variation at all trophic levels would be a
fruitful endeavor. Further, whip spiders are reclusive, and caves are
replete with cracks and crevices in which they retreat. While the
population estimates achieved small confidence intervals, estimates
are likely conservative.

Phrynus longipes cave populations are limited by prey, the
abundance of which is determined by bats and birds transporting
energy from surface ecosystems into darkness. This system serves as
an example for how cave ecosystems depend on surface environments
for energy and nutrients. As such, conserving caves requires both the
conservation of surrounding land, and the conservation of organismal
movement between surface and cave environments. Further, this
work suggests that that cave ecosystem productivity is limited by
guano, which is an economically valuable agricultural fertilizer (Kunz
et al. 2011; Sothearen et al. 2014). Caves stripped of guano have their
trophic pyramid base pulled from under them, which is sure to have
devastating bottom-up impacts on the community therein.
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Table 1.—Phrynus longipes population estimates and mean guano deposition for four Puerto Rican caves. Mark-recapture population
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number of individuals observed during collection, guano deposition are averages of 6 collection trays placed at the entrance of each cave, and
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Site MNKA Recapture success rate Estimate 6 CI x̄ deposition (mg) Occupied cave length (m)

Cueva Larvas 51 0.62 48 6 5.3 0.0 53
Cueva Maria Soto 253 0.62 352 6 35.4 43.3 289
Cueva de los Culebrones 359 0.39 441 6 45.4 75.0 104
Cueva Matos 608 0.38 576 6 12.4 85.0 118

Figure 2.—Mean guano deposition predicting Phrynus longipes
population estimates across four caves in Puerto Rico. Mean guano
deposition was highly predictive of cave population sizes (m¼ 5.74 6

0.77, R2 ¼ 0.97, F1,2 ¼ 55.45, P ¼ 0.018).
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